• 杏宇平台注册浅谈大型港口机械的防腐涂装

    杏宇平台注册浅谈大型港口机械的防腐涂装

    杏宇官网近年来我国沿江港口货物的年吞吐量逐年增长,这对于港口机械设备而言,是一个严峻的考验。港口设备主要包括:岸桥、场桥、轨道吊、轮胎吊、轨道行车、装船机、螺旋卸车机、斗轮机、门座式起重机、台架吊、皮带运输机等。 一喷一涂船舶分段喷砂喷漆涂装房正面 1.防腐涂层的保养 为了防止或延缓钢结构防腐涂层的失效, 应从以下几个方面做好防腐涂层的保养工作: (1)经常保持机械设备表面洁净、干燥, 及时清理设备上的油污、粉尘、水渍等污物。 (2)对有腐蚀性的货物作业后, 及时用淡水冲洗被污染的部位。  (3)对设备容易积水的部位, 要经常注意积水擦干,如有可能,可采取防止雨水侵入的措施以及开疏水孔等, 不使设备积水。 (4)定期检查设备的腐蚀状况,特别是对非密封型箱型结构内部的检查, 易受腐蚀的部位应列入设备重点检查项目中。   (5)维修或改造设备时,应注意对涂层的保护,杏宇平台注册尽量避免损伤涂层, 如有损伤, 应及时予以修补。  (6)闲置设备在封存前,应采取适当的防腐措施, 如彻底擦拭干净,对已锈蚀的部位进行除锈和油漆涂装等,闲置期间也要定期检查和保养。当钢结构的防腐涂层损坏后,就必须及时进行维修涂装。   2.维修翻新时期的确定 维修涂装分为局部修补涂装和全面更新涂装。 局部修补涂装:一般是指对人为因素造成的小范围涂层损伤进行的涂装; 全面更新涂装:指对由于自然因素造成大部分,甚至整机涂层失去或即将失去其应有功能而进行的涂装。 修补涂装范围小,费用少,工期短,易于实现,应及时进行; 更新涂装工程量大,费用高, 工期长, 往往需要停产进行。 由于机械设备涂层有其适宜的更新期,如果超期维修,不仅会使涂膜加剧老化和锈蚀, 而且要耗费更多的经费和人力,更为严重的是,如果更新涂装时间拖得太久,设备钢结构的某些腐蚀将十分严重,甚至影响结构的强度,酿成机损事故。因此, 趁着设备涂膜老化和锈蚀仅限于局部范围时,进行提前更新涂装是可取的。   3.维修涂装表面处理 表面处理的目的是增强涂层对被涂物表面的附着力, 提高涂层的装饰性。涂装前表面处理质量的好坏, 对涂层的质量有极大的影响。无论哪一种涂料, 其性能都同涂覆前被涂物表面处理的正确和彻底与否直接相关。如果表面处理不当或不彻底, 那么即使是价格最贵、性能最优越的涂料也会失去其应有的功效。 维修涂装时涂层有2种情形: 一是局部老化锈蚀; 二是旧涂膜还较完好,特别是底层涂膜还完好。 对于涂层严重老化、锈蚀的情形, 应彻底去除旧涂层, 并对钢材进行除锈。维修涂装由于是在设备作业现场进行的, 受现场环境及设备条件的限制, 一般采用手工工具或辅以动力工具打磨除锈, 除锈应尽量使钢铁露出金属光泽。如有条件,最好对旧涂层进行喷砂除锈处理, 这样可以取得较为理想的除锈效果。 对于旧涂膜还较完好的情形,可先用碱液清洗涂层表面的油污和盐分,再用清水冲洗, 待表面干燥后,除去附着不牢或已粉化的旧涂层, 保留完全附着牢固的涂层。因为完全附着的涂层, 仍保持着防腐蚀的功能,可以利用, 并且由于旧涂层经长年累月而硬化,具有很好的耐溶剂性, 重涂时不容易发生咬底现象, 但是旧涂层与重涂涂层之间的附着力会降低,为此,可以将旧涂层表面弄粗糙。 环保水雾喷砂机 4.维修涂装涂料的选择 维修涂装采用的涂料与原涂料最好是同一品种或同一系统的涂料, 尤其是保留旧涂层的场合。如果采用不同种类、不同品种的涂料,必须注意重涂料与原有涂层之间的适应性。由于维修涂装一般在生产现场进行, 受条件限制, 钢材表面处理不能很彻底,因此在选择涂料时,应尽量选用对表面处理要求不高, 且能适合于刷涂和辊涂的涂料。除此之外, 维修用的涂料还应具有以下几项技术特性:   (1)有充分的耐湿性。   (2)渗入钢材表面的锈层有湿润基材金属的性能。   (3)对钢、锈层和氧化皮表面有良好的附着力。   (4)透水性、透湿性和氧的渗透性小。   (5)具有耐温度变化和耐锈层微量膨胀的柔软性。   (6)涂刷性和成膜性良好, 且干性快。 5.维修涂装施工要求 维修涂装施工应注意以下几点: (1)保持涂装作业区域的空气干燥、清洁、少尘或无尘。空气里的尘埃粘附在漆膜上不但影响涂层的外观质量, 还使涂层性能下降, 所以应严加控制。 (2)空气的温度和湿度对涂层的性能影响很大,因此,维修涂装应尽可能选在好的气候环境下进行,最好是在天气晴朗干燥的秋冬季节进行。一般情况下, 涂装施工环境温度不宜低于5℃, 相对湿度不宜大于85%,涂装及干燥过程中, 漆膜不宜在烈日下暴晒, 被涂物表面温度不宜超过60℃, 雨天、雪天、雾天及风力超过4级时, 不宜施工, 被涂物表面如有结露, 也不宜施工。   (3)一般涂层的防腐寿命是随涂膜厚度的增加而延长的, 为了获得较长的防腐寿命, 涂层总膜厚一般要求在200~300μm之间。如果总膜厚低于200μm, 那么空气中的氧气和水汽将能较多地透过涂层到达钢材表面而引起腐蚀。   (4)修补涂层与原有涂层应充分重叠, 杏宇登录注册重叠范围一般不小于50mm, 并应有过渡面。   (5)维修涂装应从设备最高处开始往下进行,最后一道面漆应在前面各道施工完毕后统涂。   6.维修涂装质量检验 质量检验是确保涂层质量的重要手段。维修涂装由于受检验条件限制, 涂层质量检验一般以外观质量检验为主, 内在质量检验为辅。涂层的外观质量与内在质量是紧密相联的, 外观质量在很大程度上反映涂层的内在质量。 涂装的外观质量的一般要求是涂层各部位的颜色应符合规定的要求,且色泽均匀一致,无深浅不一的现象; 涂层应光滑平整, 无气泡、剥落、漏涂、杏宇登录注册起皱等缺陷。 由于涂装时前一道涂层的质量会影响后一道涂层的质量, 所以应对每一道涂层进行质量检验, 只有前一道涂层的外观质量及涂膜厚度达到要求后,才可进行下一道涂装施工。

  • 抛丸及喷丸强杏宇平台注册化技术的应用

    抛丸及喷丸强杏宇平台注册化技术的应用

    杏宇官网抛丸强化技术的应用可有效改善和提高汽车关键部件的抗疲劳寿命和耐腐蚀性能。目前,全球很多著名的汽车整车厂商和零部件制造商都已将强化列入标准的生产工艺流程中,同时,强化设备也与其他制造设备一样形成了完整的现代制造流水线。 良时飞机部件数控喷丸强化设备 良时火车锻件钩舌表面喷丸强化处设备

  • 杏宇平台注册复合增材制造和激光喷丸的工艺,SLM增材制造中控制残余应力的利器

    杏宇平台注册复合增材制造和激光喷丸的工艺,SLM增材制造中控制残余应力的利器

    杏宇官网来自瑞士洛桑联邦理工学院的研究人员提出了一种复合增材制造(Selective Laser Melting (SLM))和激光喷丸的工艺,即,3D LSP,在SLM的过程中进行LSP。并同传统的SP、LSP沉积态的应力进行了比较研究。3D LSP会导致深且高的CRS,杏宇平台注册从而显著的提高了疲劳抗力。 图1 论文的Graphical abstract 图2 激光喷丸产生塑性压应力且产生一个横向压应力场的过程 图3 SLM制造过程中产生残余应力的示意图,显示了喷丸、激光喷丸和3D LSP的过程 图解:喷丸Shot Peening (SP), 激光喷丸Laser Shock Peening (LSP)、复合3D打印与激光喷丸的技术 3D LSP。 在AB、LSP处理的条件下得到的残余应力曲线分布 图5 在AB LSP 1mm 40%和3D LSP 1mm 40%1、3和10层时测量得到的残余应力曲线 图6 LSP、SP、AB和变形态+退火态的表面断裂形貌和傅里叶转换

  • 杏宇平台注册化工管道用金属材料的腐蚀有哪些?

    杏宇平台注册化工管道用金属材料的腐蚀有哪些?

    杏宇官网金属腐蚀的危害性是十分普遍的,而且也是十分严重的。腐蚀会造成重大的直接或间接损失,会造成灾难性重大事故,而且危及人身安全。因腐蚀而造成的生产设备和管道的跑、冒、滴、漏,会影响生产装置的生产周期和设备寿命,增加生产成本,同时还会因有毒物质的泄漏而污染环境,危及人类健康。 根据腐蚀发生的机理,可将其分为化学腐蚀、电化学腐蚀和物理腐蚀三大类。 1、化学腐蚀化学腐蚀(Chemical Corrosion)是指金属表面与非电解质直接发生纯化学作用而引起的破坏。金属在高温气体中的硫腐蚀、金属的高温氧化均属于化学腐蚀。 2、电化学腐蚀电化学腐蚀(Electrochemical Corrosion)是指金属表面与离子导电的介质发生电化学反应而引起的破坏。电化学腐蚀是最普遍、最常见的腐蚀,如金属在大气、海水、土壤和各种电解质溶液中的腐蚀都属此类。 3、物理腐蚀 物理腐蚀(Physical Corrosion)是指金属由于单纯的物理溶解而引起的破坏。其特点是:当低熔点的金属溶入金属材料中时,会对金属材料产生“割裂”作用。由于低熔点的金属强度一般较低,在受力状态下它将优先断裂,从而成为金属材料的裂纹源。应该说,这种腐蚀在工程中并不多见。 根据腐蚀形态分类 按腐蚀形态分类,可分为全面腐蚀、局部腐蚀和应力腐蚀三大类。 1、全面腐蚀 全面腐蚀(General Corrosion)也称均匀腐蚀,杏宇平台注册是在管道较大面积上产生的程度基本相同的腐蚀。均匀腐蚀是危险性最小的一种腐蚀。 ① 工程中往往是给出足够的腐蚀余量就能保证材料的机械强度和使用寿命。 ② 均匀腐蚀常用单位时间内腐蚀介质对金属材料的腐蚀深度或金属构件的壁厚减薄量(称为腐蚀速率)来评定。SH3059标准中规定:腐蚀速率不超过0.05mm/a的材料为充分耐腐蚀材料;腐蚀速率为0.05~0.1mm/a的材料为耐腐蚀材料;腐蚀速率为0.1~0.5mm/a的材料为尚耐腐蚀材料;腐蚀速率超过0.5mm/a的材料为不耐腐蚀材料。 2、局部腐蚀局部腐蚀(Local Corrosion)又称非均匀腐蚀,其危害性远比均匀腐蚀大,因为均匀腐蚀容易被发觉,容易设防,而局部腐蚀则难以预测和预防,往往在没有先兆的情况下,使金属构件突然发生破坏,从而造成重大火灾或人身伤亡事故。局部腐蚀很普遍,据统计,均匀腐蚀占整个腐蚀中的17.8%,而局部腐蚀则占80%左右。 (1)点蚀① 集中在全局表面个别小点上的深度较大的腐蚀称为点蚀(Pitting),也称孔蚀。蚀孔直径等于或小于深度。蚀孔形态如图1所示。 图1 点蚀孔的各种剖面形状(选自ASTM标准) ② 点蚀是管道最具有破坏性的隐藏的腐蚀形态之一。奥氏体不锈钢管道在输送含氯离子或溴离子的介质时最容易产生点蚀。不锈钢管道外壁如果常被海水或天然水润湿,也会产生点蚀,这是因为海水或天然水中含有一定的氯离子。 ③ 不锈钢的点蚀过程可分为蚀孔的形成和蚀孔的发展两个阶段。 钝化膜的不完整部位(露头位错、表面缺陷等)作为点蚀源,在某一段时间内呈活性状态,电位变负,与其邻近表面之间形成微电池,并且具有大阴极小阳极面积比,使点蚀源部位金属迅速溶解,蚀孔开始形成。 已形成的蚀孔随着腐蚀的继续进行。小孔内积累了过量的正电荷,引起外部Cl-的迁入以保持电中性,继之孔内氯化物浓度增高。由于氯化物水解使孔内溶液酸化,又进一步加速孔内阳极的溶解。这种自催化作用的结果,使蚀孔不断地向深处发展,如图2所示。 ④ 溶液滞留容易产生点蚀;增加流速会降低点蚀倾向,敏化处理及冷加工会增加不锈钢点蚀的倾向;固溶处理能提高不锈钢耐点蚀的能力。钛的耐点蚀能力高于奥氏体不锈钢。 ⑤ 碳钢管道也发生点蚀,通常是在蒸汽系统(特别是低压蒸汽)和热水系统,遭受溶解氧的腐蚀,温度在80~250℃间最为严重。虽然蒸汽系统是除氧的,但由于操作控制不严格,很难保证溶解氧量不超标,因此溶解氧造成碳钢管道产生点蚀的情况经常会发生。 (2)缝隙腐蚀当管道输送的物料为电解质溶液时,在管道内表面的缝隙处,如法兰垫片处、单面焊未焊透处等,均会产生缝隙腐蚀(Crevice Corrosion)。一些钝性金属如不锈钢、铝、钛等,容易产生缝隙腐蚀。 缝隙腐蚀的机理,一般认为是浓差腐蚀电池的原理,即由于缝隙内和周围溶液之间氧浓度或金属离子浓度存在差异造成的。缝隙腐蚀在许多介质中发生,但以含氯化物的溶液中最严重,其机理不仅是氧浓差电池的作用,还有像点蚀那样的自催化作用,如图3所示。 图3 缝隙腐蚀的机理 (3)焊接接头的腐蚀 通常发生于不锈钢管道,有三种腐蚀形式。 ① 焊肉被腐蚀成海绵状,这是奥氏体不锈钢发生的δ铁素体选择性腐蚀。 为改善焊接性能,奥氏体不锈钢通常要求焊缝含有3%~10%的铁素体组织,但在某些强腐蚀性介质中则会发生δ铁素体选择性腐蚀,即腐蚀只发生在δ铁素体相(或进一步分解为σ相),结果呈海绵状。 ② 热影响区腐蚀。造成这种腐蚀的原因,是焊接过程中这里的温度正好处在敏化区,有充分的时间析出碳化物,从而产生了晶间腐蚀。 晶间腐蚀是腐蚀局限在晶界和晶界附近而晶粒本身腐蚀比较小的一种腐蚀形态,其结果将造成晶粒脱落或使材料机械强度降低。 晶间腐蚀的机理是“贫铬理论”。杏宇登录注册不锈钢因含铬而有很高的耐蚀性,其含铬量必须要超过12%,否则其耐蚀性能和普通碳钢差不多。不锈钢在敏化温度范围内(450~850℃),奥氏体中过饱和固溶的碳将和铬化合成Cr23C6,沿晶界沉淀析出。由于奥氏体中铬的扩散速度比碳慢,这样,生成Cr23C6所需的铅必然从晶界附近获取,从而造成晶界附近区域贫铬。如果含铬量降到12%(钝化所需极限含铬量)以下,则贫铬区处于活化状态,作为阳极,它和晶粒之间构成腐蚀原电池,贫铬区阳极面积小,晶粒阴极面积大,从而造成晶界附近贫铬区的严重腐蚀。 ③ 熔合线处的刀口腐蚀,一般发生在用Nb及Ti稳定的不锈钢(347及321)。刀口腐蚀大多发生在氧化性介质中。刀口腐蚀示意如图4所示。 图4 刀口腐蚀 (4)磨损腐蚀 也称冲刷腐蚀。当腐蚀性流体在弯头、三通等拐弯部位突然改变方向,它对金属及金属表面的钝化膜或腐蚀产物层产生机械冲刷破坏作用,同时又对不断露出的金属新鲜表面发生激烈的电化学腐蚀,从而造成比其他部位更为严重的腐蚀损伤。这种损伤是金属以其离子或腐蚀产物从金属表面脱离,而不是像纯粹的机械磨损那样以固体金属粉末脱落。 如果流体中夹有气泡或固体悬浮物时,则最易发生磨损腐蚀。不锈钢的钝化膜耐磨损腐蚀性能较差,钛则较好。蒸汽系统、H2S-H2O系统对碳钢管道弯头、三通的磨损腐蚀均较严重。 (5)冷凝液腐蚀对于含水蒸气的热腐蚀性气体管道,在保温层中止处或破损处的内壁,由于局部温度降至露点以下,将发生冷凝现象,从而造成冷凝液腐蚀,即露点腐蚀。 (6)涂层破损处的局部大气锈蚀对于化工厂的碳钢管线,这种腐蚀有时会很严重,因为化工厂区的大气中常常含有酸性气体,比自然大气的腐蚀性强得多。 3、应力腐蚀金属材料在拉应力和特定腐蚀介质的共同作用下发生的断裂破坏,称为应力腐蚀(Stress Corrosion)破裂。发生应力腐蚀破裂的时间有长有短,有经过几天就开裂的,也有经过数年才开裂的,这说明应力腐蚀破裂通常有一个或长或短的孕育期。 应力腐蚀裂纹呈枯树枝状,大体上沿着垂直于拉应力的方向发展。裂纹的微观形态有穿晶型、晶间型(沿晶型)和两者兼有的混合型。 应力的来源,对于管道来说,焊接、冷加工及安装时残余应力是主要的。 并不是任何的金属与介质的共同作用都引起应力腐蚀破裂。其中金属材料只有在某些特定的腐蚀环境中,才发生应力腐蚀破裂。表1列出了容易引起应力腐蚀开裂的管道金属材料和腐蚀环境的组合。 表1 易产生应力腐蚀开裂的金属材料和腐蚀环境组合(选自SH 3059附录E) 表1 易产生应力腐蚀开裂的金属材料和腐蚀环境组合(选自SH 3059附录E) (1)碱脆 金属在碱液中的应力腐蚀破裂称碱脆。碳钢、低合金钢、不锈钢等多种金属材料皆可发生碱脆。碳钢(含低合金钢)发生碱脆的趋势如图5所示。 图5 碳钢在碱液中的应力腐蚀破裂区 由图5可知,氢氧化钠浓度在5%以上的全部浓度范围内碳钢几乎都可能产生碱脆,碱脆的最低温度为50℃,所需碱液的浓度为40%~50%,以沸点附近的高温区最易发生。裂纹呈晶间型。奥氏体不锈钢发生碱脆的趋势如图6所示。 氢氧化钠浓度在0.1%以上的浓度时18-8型奥氏体不锈钢即可发生碱脆。以氢氧化钠浓度40%最危险,这时发生碱脆的温度为115℃左右。超低碳不锈钢的碱脆裂纹为穿晶型,含碳量高时,碱脆裂纹则为晶间型或混合型。当奥氏体不锈钢中加入2%钼时,则可使其碱脆界限缩小,并向碱的高浓度区域移动。镍和镍基合金具有较高的耐应力腐蚀的性能,它的碱脆范围变得狭窄,而且位于高温浓碱区。 图6 产生应力腐蚀破裂的烧碱浓度与温度关系 注:曲线上部为危险区 (2)不锈钢的氯离子应力腐蚀破裂 氯离子不但能引起不锈钢孔蚀,更能引起不锈钢的应力腐蚀破裂。 发生应力腐蚀破裂的临界氯离子浓度随温度的上升而减小,高温下,氯离子浓度只要达到10-6,即能引起破裂。发生氯离子应力腐蚀破裂的临界温度为70℃。具有氯离子浓缩的条件(反复蒸干、润湿)是最易发生破裂的。工业中发生不锈钢氯离子应力腐蚀破裂的情况相当普遍。 不锈钢氯离子应力腐蚀破裂不仅仅发生在管道的内壁,发生在管道外壁的事例也屡见不鲜,如图7所示。 图7 不锈钢管道应力腐蚀破裂 作为管外侧的腐蚀因素,被认为是保温材料的问题,对保温材料进行分析的结果,被检验出含有约0.5%的氯离子。这个数值可认为是保温材料中含有的杂质,或由于保温层破损、浸入的雨水中带入并经过浓缩的结果。 (3)不锈钢连多硫酸应力腐蚀破裂以加氢脱硫装置最为典型,不锈钢连多硫酸(H2SxO6,x=3~5)的应力腐蚀破裂颇为引人关注。 管道在正常运行时,受硫化氢腐蚀,生成的硫化铁,在停车检修时,与空气中的氧及水反应生成了H2SxO6。在Cr-Ni奥氏体不锈钢管道的残余应力较大的部位(焊缝热影响区、弯管部位等)产生应力腐蚀裂纹。 (4)硫化物腐蚀破裂① 金属在同时含有硫化氢及水的介质中发生的应力腐蚀破裂即为硫化物腐蚀破裂,简称硫裂。在天然气、石油采集,加工炼制,石油化学及化肥等工业部门常常发生管道、阀门硫裂事故。发生硫裂所需的时间短则几天,长则几个月到几年不等,杏宇注册但是未见超过十年发生硫裂的事例。 ② 硫裂的裂纹较粗,分支较少,多为穿晶型,也有晶间型或混合型。发生硫裂所需的硫化氢浓度很低,只要略超过10-6,甚至在小于10-6的浓度下也会发生。 碳钢和低合金钢在20~40℃温度范围内对硫裂的敏感性最大,奥氏体不锈钢的硫裂大多发生在高温环境中。随着温度升高,奥氏体不锈钢的硫裂敏感性增加。在含硫化氢及水的介质中,如果同时含醋酸,或者二氧化碳和氯化钠,或磷化氢,或砷、硒、锑、碲的化合物或氯离子,则对钢的硫裂起促进作用。对于奥氏体不锈钢的硫裂,氯离子和氧起促进作用,304L和316L不锈钢对硫裂的敏感性有如下的关系:H2S+H2O<H2S+H2O+Cl-<H2S+H2O+Cl-+O2(硫裂的敏感性由弱到强)。 对于碳钢和低合金钢来说,淬火+回火的金相组织抗硫裂最好,未回火马氏体组织最差。钢抗硫裂性能依淬火+回火组织→正火+回火组织→正火组织→未回火马氏体组织的顺序递降。 钢的强度越高,越易发生硫裂。钢的硬度越高,越易发生硫裂。在发生硫裂的事故中,焊缝特别是熔合线是最易发生破裂的部位,这是因为这里的硬度最高。NACE对碳钢焊缝的硬度进行了严格的规定:≤200HB。这是因为焊缝硬度的分布比母材复杂,所以对焊缝硬度的规定比母材严格。焊缝部位常发生破裂,一方面是由于焊接残余应力的作用,另一方面是焊缝金属、熔合线及热影响区出现淬硬组织的结果。为防止硫裂,焊后进行有效的热处理十分必要。 (5)氢损伤氢渗透进入金属内部而造成金属性能劣化称为氢损伤,也称氢破坏。氢损伤可分为四种不同类型:氢鼓泡、氢脆、脱碳和氢腐蚀。 ① 氢鼓泡及氢诱发阶梯裂纹主要发生在含湿硫化氢的介质中。 硫化氢在水中离解: 钢在硫化氢水溶液中发生电化学腐蚀: 由上述过程可以看出,钢在这种环境中,不仅会由于阳极反应而发生一般腐蚀,而且由于S2-在金属表面的吸附对氢原子复合氢分子有阻碍作用,从而促进氢原子向金属内渗透。当氢原子向钢中渗透扩散时,遇到了裂缝、分层、空隙、夹渣等缺陷,就聚集起来结合成氢分子造成体积膨胀,在钢材内部产生极大压力(可达数百兆帕)。 如果这些缺陷在钢材表面附近,则形成鼓泡,如图8所示。如果这些缺陷在钢的内部深处,则形成诱发裂纹。它是沿轧制方向上产生的相互平行的裂纹,被短的横向裂纹连接起来形成“阶梯”。氢诱发阶梯裂纹轻者使钢材脆化,重者会使有效壁厚减小到管道过载、泄漏甚至断裂。 图8 氢鼓泡 氢鼓泡需要一个硫化氢临界浓度值。有资料介绍,硫化氢分压在138Pa时将产生氢鼓泡。如果在含湿硫化氢介质中同时存在磷化氢、砷、碲的化合物及CN-时,则有利于氢向钢中渗透,它们都是渗氢加速剂。 氢鼓泡及氢诱发阶梯裂纹一般发生在钢板卷制的管道上。 ② 氢脆无论以什么方式进入钢内的氢,都将引起钢材脆化,即伸长率、断面收缩率显著下降,高强度钢尤其严重。若将钢材中的氢释放出来(如加热进行消氢处理),则钢的力学性能仍可恢复。氢脆是可逆的。 H2S-H2O介质常温腐蚀碳钢管道能渗氢,在高温高压临氢环境下也能渗氢;在不加缓蚀剂或缓蚀剂不当的酸洗过程能渗氢,在雨天焊接或在阴极保护过度时也会渗氢。 ③ 脱碳在工业制氢装置中,高温氢气管道易产生碳损伤。钢中的渗碳体在高温下与氢气作用生成甲烷: 反应结果导致表面层的渗碳体减少,而碳便从邻近的尚未反应的金属层逐渐扩散到此反应区,于是有一定厚度的金属层因缺碳而变为铁素体。脱碳的结果造成钢的表面强度和疲劳极限的降低。 ④ 氢腐蚀钢受到高温高压氢作用后,其力学性能劣化,强度、韧性明显降低,并且是不可逆的,这种现象称为氢腐蚀。 氢腐蚀的历程可用图9来解释。 图9 氢腐蚀的历程 氢腐蚀的过程大致可分为三个阶段:孕育期,钢的性能没有变化;性能迅速变化阶段,迅速脱碳,裂纹快速扩展;最后阶段,固溶体中碳已耗尽。 氢腐蚀的孕育期是重要的,它往往决定了钢的使用寿命。 某氢压力下产生氢腐蚀有一起始温度,它是衡量钢材抗氢性能的指标。低于这个温度氢腐蚀反应速度极慢,以至孕育期超过正常使用寿命。碳钢的这一温度大约在220℃左右。 氢分压也有一个起始点(碳钢大约在1.4MPa左右),即无论温度多高,低于此分压,只发生表面脱碳而不发生严重的氢腐蚀。 各种抗氢钢发生腐蚀的温度和压力组合条件,就是著名的Nelson曲线(在很多管道器材选用标准规范内均有此曲线图,如SH3059《石油化工管道设计器材选用通则》)。…

  • 杏宇平台注册VOCs治理设施“爆炸”等事故原因有哪些?如何避免?

    杏宇平台注册VOCs治理设施“爆炸”等事故原因有哪些?如何避免?

    杏宇官网VOCs大部分都是易燃易爆气体,如果没有合理地选择工艺或规范的操作运行管理,往往导致火灾、爆炸等事故的发生。因此无论是环保设计公司还是VOCs产生企业,都必须对废气净化设施装置的安全风险问题给予高度的重视,防患于未然。 2020年4月16日8时许,位于深圳市龙华街道的某公司喷漆工艺的UV光氧催化设备发生火情,火势沿管道蔓延到喷漆车间和楼顶,未发生人员伤亡。 2017年6月28日,青海盐湖工业股份有限公司化工分公司一期乙炔装置环保附件设施炭黑水储进行罐管线改造时发生疑似内爆事故,造成现场监护、操作人员4人受伤。 2016年6月1日,位于天津市滨海新区中塘镇东河筒村的天津市亚东化工有限公司液体染料车间废气回收装置断电,导致正在反应中产生的废气无法通过引风装置导入废气回收系统造成泄漏。 2014年7月3日下午,新疆浩源公司正在建设中阿克苏市阿塔公路(207省道)加气站,外包设备供应商员工在进行设备调试时,发生废气回收罐爆炸事故。事故造成设备厂家现场调试人员2人腿部被炸成重伤、公司1人轻伤。 2012年4月,杭州莫干山路的华东制药厂发生爆炸,杏宇平台注册事故原因为工作人员在检修车间的废气处理装置时(这个废气装置里主要是乙酸乙脂等有机物),因为电焊工的违规操作,导致装置爆炸,爆炸形成的冲击波造成103车间及周边部分门窗破碎,并且造成企业一名义务消防员和一名电焊工受轻伤。 2007年挪威西部一家汽油处理厂由于活性炭罐自燃导致与之相连的储罐起火而引发火灾。

  • 汽车涂装废水杏宇登录注册处理技术与回收的研究进展

    汽车涂装废水杏宇登录注册处理技术与回收的研究进展

    杏宇官网汽车涂装是汽车生产的一个重要环节,对于汽车成品具有3个主要作用: (1)使汽车外表更具观赏性; (2)防止汽车中金属构件的生锈损坏,延长汽车的使用寿命; (3)提供不同的车身颜色满足消费者的个性化需求。 汽车涂装废水的污染源及水质分析 1.1涂装废水污染源分析 表1 涂装工艺污染源分析 1.2涂装废水的水质特征 (1)涂装工艺产生的废水包含各种形态的有毒有害物质如Ni2+、Cu2+、Zn2+及其化合物、VOCs、油漆颗粒等,这些污染物会对受纳水体及土壤环境产生潜在危害。根据文献研究得出涂装废水的水质参数及范围,如表2所示。表2 涂装废水水质参数及范围(2)电泳和喷漆工序产生大量的有机污染物,可生化性差,采用生物处理工艺时废水中有生物毒性的物质,可能会抑制微生物的活性甚至造成微生物中毒死亡,影响处理效果。因此,需针对不同水质选择合适的预处理工艺以分担后续生物或高级处理的负荷。(3)由于涂装工艺中不同工序产生不同浓度和类型的污染物,各工序废水经混合后形成的废水具有水量波动范围大、水质不稳定的特点。针对涂装废水中大量有机物、重金属、油脂等有毒有害物质,膜分离、高级氧化、电渗析、电解等先进技术已经越来越广泛地应用于该类废水的治理中。欧美等发达国家大部分涂装车间先对各工序废水进行分质预处理,再利用反渗透电渗析等技术进行深度处理,出水水质良好,大部分可实现回用。笔者认为,根据车企使用涂料及涂装工艺的差异,采用新型组合工艺,提高处理后的水质,可实现废水的大量或完全回用。本文从预处理、主体处理和循环回用工艺3个方面综述了涂装废水处理的一些最新应用或研究进展。2 汽车涂装废水分质预处理2.1去除油脂2.1.1气浮杨德敏等采用化学沉淀-混凝法对磷化和脱脂产生的混合废水进行预处理,再经气浮-水解酸化处理,结果表明:该组合工艺对悬浮固体的去除率为90%~99%,油截留率可达99%,说明气浮预处理脱脂废水性能优越。2.1.2超滤超滤是一种压力驱动的膜分离技术,杏宇登录注册广泛应用于汽车涂装废水的处理中,特别是脱脂除油和电泳漆回收方面。在脱脂废水处理方面,超滤较传统处理工艺具有效率高、能耗低、出水水质优的优势而越来越受汽车制造企业的青睐。文会超等采用无机陶瓷膜对脱脂废水进行处理,结果表明:采用孔径200nm的氧化钴膜,在操作压力0.1MPa,膜面流速5~7m/s、温度为45℃的最优操作条件时,油截留率达99.4%,出水油浓度<30mg/L,膜的稳定通量达到了390L/(m2·h),表明超滤膜截留的脱脂剂可进行回用,渗透液可作为水洗和清理水使用。2.2去除重金属化学沉淀法是目前在处理涂装车间含重金属废水方面应用最成熟的方法,具有操作简单、处理成本相对低廉、处理效果良好的优点,但容易造成水中高价值(Cu2+、Zn2+、Ni2+、Cd2+)金属离子的损失,吸附法和离子交换法近年来在涂装废水金属离子的回收方面表现出良好应用前景。2.2.1吸附法吸附法能有效去除汽车涂装废水中磷酸盐、重金属和色度等,因此在磷化废水处理中表现出良好的应用优势,但吸附前需要对废水进行预处理。AbuBakar等研究了固定床吸附对汽车涂装废水处理的有效性,结果表明:化学改性砂吸附氨的范围达43.68%~96.55%,高于原始砂的吸附范围0~89.66%;化学改性砂吸附Zn,Mn,Cr,Cu,As,Ni,Co,Fe离子的范围为93%~100%,明显高于原始砂的吸附范围0.8%~100%。较原始砂固定床,改性砂对氨、锌,锰,铜,砷,镍,钴和铁离子的去除率及吸附容量均明显提高。吸附法对涂装废水中磷酸盐和色度的去除效果良好,杏宇注册且对高价值金属离子有良好的回收效果。但是吸附过程对进水pH要求严格,而且吸附材料吸附饱和后需及时再生或更换,造成处理成本偏高。2.2.2离子交换法采用离子交换法处理涂装废水,对树脂再生后不仅能回收水中高价值金属离子,还能降低这些有毒金属离子进入受纳水体危害环境的风险性。该处理技术在含金属离子废水处理方面表现出了良好的前景。Sengorur等研究了PuroliteC-104离子交换树脂对涂装混合废水中Cu2+和Zn2+的去除效果,结果发现:采用Langmuir模型拟合得到Zn2+和Cu2+的吸附交换去除量分别达到了7.92mg/g和1.218mg/g,表明离子交换法处理涂装废水对Zn2+和Cu2+等金属离子的回收效果较好。2.3去除颗粒态有机物及悬浮物2.3.1电浮选技术电浮选技术已在含油废水、印染废水、矿物废水、电镀废水等方面得到了广泛应用,对废水中油、SS、金属离子的去除效果良好,特别是在喷漆废水处理方面具有明显优势。Mohtashami等研究了电浮选对喷漆废水中油漆颗粒的去除效果,结果表明:电流密度范围为33~44A/m2、运行时间40min时,TSS的去除率范围达90.39%~97.43%。该技术应用到喷漆废水处理方面存在的缺点为阳极材料是钛等贵重金属,会增加处理成本,而且电极易被污染。因此,新型价格低廉、电化学稳定、强度高的阳极材料的研发是一个重要方面。2.3.2微滤微滤与混凝或化学沉淀组合工艺常被用于预处理汽车涂装废水,以去除水中的悬浮物、磷酸盐、大分子有机物等。张进等等采用化学沉淀与微滤耦合工艺处理表调废水,研究表明:在跨膜压差为0.078MPa、原液温度范围为18~33℃、错流速度为4.9m/s,对COD和PO43-的去除率分别达96.9%和99.8%,膜滤出水水质达到GB18918—2002中的二级排放标准,可直接排放或回用。2.3.3混凝沉淀法混凝沉淀常应用于电泳、磷化、喷漆工序废水预处理方面,可有效去除水中颗粒态有机物、SS、磷酸盐、金属离子,但对溶解性有机物难以去除,需要后续处理工艺进一步处理。陈烨等采用混凝-芬顿(Fenton)法处理汽车涂装车间的倒槽废水,探究了聚合三氯化铁、聚硅硫酸铁、聚合氯化铝、聚合氯化铝铁、聚硅硫酸铝5种混凝剂的投加量、pH对混凝效果的影响,结果表明:PAC投加量为500mg/L、pH为6、反应时间30min的条件下,COD去除率可达65.8%。严凯等采用分质混凝-水解酸化-膜生物反应器(MBR)工艺处理涂装车间废水,工程表明,水质:COD为45~76mg/L、SS、石油类、磷酸盐的质量浓度分别为12~33mg/L、0.1~2.7mg/L、0.06~0.35mg/L,达到GB8978—1996《污水综合排放标准》一级排放标准,表明混凝沉淀处理能有效去除废水中难降解有机物,降低后续处理单元的部分负荷。2.4提高废水可生化性2.4.1生物酶技术生物酶预处理有机废水具有高效、产物无毒害、酶投加量少的特点,是一种很有前景的应用于处理难降解有机废水的新型技术。Mackul’ak等研究了复合酶对汽车涂装废水的处理效果,结果表明:经过混合酶预处理后,活性污泥对废水中COD的去除率从48%提高到了76%,废水的可生化性得到改善。研究还发现,冬季低温微生物活性降低,投加适量复合酶能直接促进微生物的氧化过程。国内外将生物酶技术应用于汽车涂装废水预处理的报道少见,但生物酶处理有机废水的优势显著,因此需要对该技术进行深入研究和开发,并推广到涂装废水的预处理方面。2.4.2高压脉冲电絮凝技术高压脉冲电凝处理能有效降低水中金属离子、油脂和SS的浓度并削减生物毒性,在涂装废水处理中得到了较广泛地应用。MercadoMartínez等采用电凝技术处理汽车涂装废水,结果表明:对Ni2+和COD的去除率约为90%和30%。Gilpavas等研究了电凝工艺对涂装含油废水的去除效果,结果表明:对油和COD的去除率分别达95%和87.4%,矿化度达70.6%,可生化性指数提高至0.54。马栋等报道了电絮凝工艺处理喷漆废水的工程实例,结果表明:出水pH稳定在6~9,SS浓度<150mg/L,色度<80倍,水质能满足循环使用的要求,相比传统处理工艺可节约运维费用447万/a。电凝处理工艺具有运行稳定,污泥量少,处理效果好的优点,但存在电耗高和电极易钝化的不足,因此高压脉冲电源、三维电极的开发对改善电极钝化及降低能耗具有重要意义。2.4.3水解酸化法水解酸化常用于改善废水可生化性,在涂装废水前处理方面得到了广泛地应用。黄中悬等采用水解酸化反应器对涂装混合废水进行处理以改善废水的可生化性,结果表明:在COD容积负荷为1.2~1.3kg/(m3·d)、循环流量为180L/h、反应时间为24h的条件下,COD的去除率和酸化率分别稳定在21%和10%。表明水解酸化处理能提高该废水的可生化性,减轻后续好氧处理工艺的有机负荷,但单独厌氧处理水质很难达到排放标准,需进一步处理。 3 汽车涂装废水主体处理3.1生物处理由于涂装废水中含油脂、重金属、难降解有机物等抑制微生物活性的物质,故需要在生物处理前采用混凝沉淀或絮凝气浮等技术进行预处理,以去除这些污染物,提高废水的可生物降解性。3.1.1好氧生物法目前汽车涂装废水最普遍采用的好氧工艺为:序批式活性污泥(SBR)、接触氧化、好氧颗粒污泥、曝气生物滤池等。刘绍根等研究了SBR法处理汽车涂装废水的可行性,并考察了驯化后颗粒污泥的形态、性质以及SBR对污染物的去除效果。结果表明:经驯化5周后球状污泥颗粒的平均粒径达1.5mm,污泥质量浓度(MLSS)为8000mg/L,污泥体积指数(SVI30)为28mL/g,沉降速度为40m/h,驯化后污泥的沉降性能、生物量均明显提高。反应器运行至45d时除污性能稳定且高效,对COD、游离态氨(NH4–N)、正磷酸盐(PO43–P)的去除率分别达80%、85%、70%,出水水质可达到GB8978—1996《污水综合排放标准》二级标准。Zhu等采用多级接触氧化工艺对汽车涂装废水进行处理,结果表明:水力停留时间(HRT)为8h时,对COD、氨氮、总氮的去除效率分别达到83.8%、86.3%和65%,剩余污泥产量可减少82.8%。SalehiMoayed等对某涂装车间化学沉淀废水和生活污水以1∶1进料比在活性污泥装置中进行处理,结果表明:在HRT为20h、泥龄(SRT)为20d的条件下,COD去除率可达93%,出水COD和SS的质量浓度分别稳定在60mg/L和57mg/L。3.1.2厌氧-好氧生物法厌氧-好氧处理工艺较单独好氧或厌氧工艺,具有污泥产量低、抗水力及有机负荷高、处理效果更好等优势,在涂装废水治理方面受到广泛关注。目前应用在汽车涂装废水处理中常见的厌氧-好氧工艺为:上流式厌氧污泥床(UASB)-好氧接触、水解酸化-接触氧化、水解酸化-MBR等。张向和等采用UASB-好氧接触氧化工艺对某汽车脱脂废水进行处理,结果表明:进水COD质量浓度为6000mg/L,在厌氧处理有机负荷为1.61~2.42kg/(m3·d)、杏宇代理厌氧和好氧HRT分别为3.4d和2.5d的条件下,厌氧段COD的去除率为40%,好氧段COD的去除率达89%,表明该处理工艺能高效降解水中的有机污染物。3.2物化-生物处理物化-生物处理是对涂装废水先进行物化处理,以去除水中的悬浮物、重金属、难降解有机物等,再利用生物法对废水进行处理,实现达标排放或循环回用的目标,被认为是最具前景的涂装废水处理方法之一。蒋宏国等采用混凝-水解酸化-SBR工艺处理某汽车涂装车间废水,工程表明:该处理工艺运行稳定,出水水质指标:pH6.5~7.5、COD、SS、BOD5、石油类、磷酸盐质量浓度分别为80~95mg/L、60~70mg/L、4~20mg/L、4~9mg/L和0.2~0.5mg/L,均符合GB18918—2002《污水综合排放标准》一级标准,处理成本仅为0.93元/m3。闫世超等采用分质预处理-接触氧化工艺对汽车涂装工艺废水进行处理,工程表明:磷化废水经PAC、聚丙烯酰胺(PAM)混凝沉淀处理后,总磷、锌、镍的去除率分别达到了99%、97%、97%;电泳、喷漆、脱脂废水混合后经混凝沉淀-混凝气浮处理后COD、SS、石油类的去除率分别达到了67%、70%、50%以上。各工序废水经预处理后混合均匀与生活污水进一步混匀进入接触氧化池进行生物处理,该工程运行15个月期间内出水稳定且水质符合GB8978—1996《污水综合排放标准》三级标准要求。以上工程表明物化-生物处理具有运行稳定、处理成本低廉、抗水力负荷强的优势,但也存在占地面积大、处理周期长、生物处理效果受pH及温度影响较大的不足。3.3高级氧化技术涂装废水中的难生物降解物质对微生物有抑制及毒害作用,利用高级氧化技术将难降解的有机物氧化为易降解物质或CO2和H2O,是该类废水无害化处理的有效途径。目前Fenton氧化为深度处理或生物预处理工艺在涂装废水处理领域应用前景广阔,而臭氧氧化、电化学氧化、催化湿式氧化方面的研究尚不成熟。Fenton氧化与常规物化法相比,处理成本较高,主要用于难生物降解或一般化学氧化处理效果较差的有机废水处理方面。陈烨等将混凝沉淀-Fenton氧化集成在一起,在汽车涂装废水处理车间评估了该工艺的处理性能,结果表明:COD的去除率可达90.2%。王小晓等采用Fenton-混凝法应急处理汽车涂装废水,结果表明:COD、总磷和SS的去除率分别达到94%、98%、94%;金属离子Zn2+、Ni2+、Cu2+、Cr6+等指标均可达到GB8978—1996《污水综合排放标准》一级排放标准,表明该技术用于涂装废水的应急处理具有经济及技术可行性。3.4处理工艺特点对比通过对比汽车涂装废水处理的常用工艺,笔者认为,该类废水处理的研究热点将集中在电浮选、高压脉冲电凝、生物酶、膜分离等技术的持续开发与改进方面。以下是对汽车涂装废水常用处理工艺特点对比,见表3。 表3 汽车涂装废水处理工艺特点对比 4 涂装废水的循环与回用工艺采用常规工艺处理汽车涂装废水造成水资源的浪费,因此将废水深度处理达到城市污水再生利用相关水质标准,进而在市政杂用、生活回用、工业回用等领域得到有效回用是该类废水治理的方向之一。4.1物化-MBR-RO回用工艺郭北洋研究了物化-MBR-反渗透(RO)工艺处理回用汽车涂装废水的可行性,工程表明:经预处理后的磷化废水与经预处理后的脱脂、电泳和喷涂废水混合均匀,再经混凝-生物处理,生化出水部分经过混凝-过滤处理后回用作清洁绿化用水;其余出水经MBR-RO工艺处理后出水水质良好,符合涂装生产用水要求。4.2反渗透浓缩回用工艺郑一鸣研究了RO技术应用于汽车涂装废水的处理及中水回用效果,结果表明:RO膜系统产生的纯水电导率≤200μS/cm,Cl-、Ca2+的质量浓度分别≤25mg/L、≤10mg/L,产水全部回用作喷漆车间生产用水和循环冷却水,节约工艺用水约9×104t/a。采用该技术处理成本为15.45元/m3,但对比机械蒸汽压缩(MVC)工艺,RO浓缩技术电耗和蒸汽耗量仅是低能耗MVC工艺的25%~33%。该工艺能成功应用于汽车涂装废水处理,并且出水能回用作工艺用水得益于RO膜系统出水水质优、能耗相对较低的特点。目前多级膜过滤、物化-MBR-RO、反渗透浓缩等回用技术已在汽车涂装废水的回用方面有一定范围地应用。正渗透、膜蒸馏、多效蒸发等新型废水处理回用技术,杏宇登录注册因其能耗较高处于实验室研究阶段。5 结语国内外对汽车涂装废水的处理进行了大量研发与改进,其中预处理+生物处理是应用于该类废水处理最广泛的工艺类型;而高级氧化、膜分离等深度处理工艺的引入和优化组合是当前涂装废水治理的研究热点。目前这类废水处理仍存在以下问题:(1)预处理阶段投加化学药剂造成污染物与药剂发生化学反应使水质复杂化;(2)生物处理工艺处理周期长、占地面积大、处理效果不理想;(3)废水中金属离子、N、P等高价值资源未能实现有效回收利用;(4)废水的处理回用率较低。根据目前应用于汽车涂装废水治理的研究及废水水质特征,以下方面还需进行创新性研究。(1)采用色谱或质谱等分析手段对工序废水进行研究分析,确定废水中有机物的种类及其含量,有利于根据废水中污染物种类及浓度的不同,杏宇注册选用合适工艺进行分质处理。(2)进一步研究高压脉冲电凝、酶处理、MBR工艺、膜组合工艺等新型方法对该类废水的处理效果。(3)研究新型离子交换树脂和吸附剂等材料对废水中高价值重金属(Cu、Zn、Ni、Cd)的选择性去除和回收。(4)由于RO及其组合工艺用于该类废水深度处理,可实现废水的大规模或完全回用,因此该技术在该类废水处理及回用方面表现出巨大优越性,低压膜和抗污染膜的研发将是未来膜分离的研究热点及难点。

  • 杏宇登录注册抓重点破难点推进VOCs治理,山东菏泽3400余家涉VOCs中小型企业装上“电监管”设施

    杏宇登录注册抓重点破难点推进VOCs治理,山东菏泽3400余家涉VOCs中小型企业装上“电监管”设施

    杏宇官网“截至目前,我们已累计对3400余家涉VOCs中小型企业实施了环保‘电监管’,基本实现环境监管信息化全覆盖。”这是记者日前从山东省菏泽市生态环境局了解到的。对涉VOCs中小型企业全部实施环保“电监管”,是菏泽市全面推进VOCs治理的重要一环。菏泽市生态环境局局长张善甲告诉记者:“VOCs治理是大气污染治理往深处走、往细处走进入新阶段的重要标志。相对于颗粒物及其他气态污染物的防治,VOCs污染防治面临着企业认识不到位、治理技术不成熟、监测监管手段相对落后等问题,是当前大气环境治理的一大短板。”为加快推进VOCs污染防治,补齐这一短板,菏泽市严格落实国家、省VOCs专项治理方案各项要求,紧盯重点领域、重点区域、重点时段,系统治理、综合施策,推动VOCs治理迈上新台阶。 RTO、RCO、VOC 有机废气处理装置 强化工业领域治理,落实重点时段减排“通过大数据分析,菏泽VOCs排放中工业源占比达67.2%。因此,工业领域是我们现阶段VOCs治理的重点。”张善甲告诉记者。按照无组织收集到位、有组织达标排放的要求,菏泽市在充分摸排评估的基础上,组织223家重点企业实施VOCs无组织排放治理,87家企业新建适宜高效的治污设施。杏宇登录注册抓好泄漏检测与修复(LDAR)工作,目前已完成73家,其余22家正在开展。为强化环境监管,菏泽市自去年开始探索建立“规模企业自动在线监管、中小型企业用电监管”的环境监管新模式,除对重点涉VOCs企业依法安装在线监管设施外,对3446家涉VOCs中小型企业实施环保“电监管”。对菏泽城区这一决定全市空气质量优良率的重点区域,菏泽市实施全天候、全方位的重点监管。“ 我们引进专家团队,成立五大战区,建立问题推送、响应、整改反馈的闭环管理机制。夏季攻坚期间共推送、解决相关问题255个,平均整改时长已下降到1小时左右,基本实现第一时间发现问题、第一时间解决问题。”张善甲说。为了抓好重点时段减排,菏泽市实施了四大“错时”措施,杏宇代理包括对737家加油站全部推行夜间错时加油,城区沥青铺设等VOCs工地源全部实施错时施工,汽修行业强力推行错时喷漆,涉VOCs企业强制实行错时开停工。

  • VOCs监测方法的监测杏宇登录注册标准汇总(部分)

    VOCs监测方法的监测杏宇登录注册标准汇总(部分)

    杏宇官网我国在VOCs监测方面也出台了一系列监测标准,尤其是近几年,值得指出的是,目前我国推荐的VOCs监测标准方法(针对污染源、城市大气、室内空气等)均为采用吸附解析采样方法的离线监测技术,其中《固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱法》(HJ38-2017),以下简称HJ38标准,其方法原理是气袋采样,气相色谱分离甲烷,FID检测的实验室方法。气相色谱法(GC)是我国环境空气及污染源排气中VOCs组分分析的主流方法。 汇总标准如下:

  • 齿轮表面的喷丸强杏宇代理化技术的应用

    齿轮表面的喷丸强杏宇代理化技术的应用

    杏宇官网1..提高渗碳齿轮表面硬度例1:一汽热处理分厂喷丸设备采用德国产TR5SVR—1型应力喷丸设备。喷丸工艺为:采用直径为¢0.8mm钢丸,喷丸时间9min,喷丸速度为2800r/min。齿轮材料为22CrMoH钢,经渗碳淬火及回火处理。喷丸强化处理后齿轮表层组织得到了细化,表层的残留奥氏体含量比未经喷丸处理工件的残留奥氏体含量要低10%左右,在距离表面0.15mm范围内,变化量比较明显;经强化喷丸处理后的齿轮表面硬度提高了0.5~2HRC。 2.提高齿轮表面残余压应力并改善表层显微组织例2:桑塔纳轿车变速器二档从动齿轮,经渗碳淬火、杏宇代理回火处理。喷丸采用叶轮式喷丸机,喷丸速度2900r/min,弹丸硬度57HRC。其喷丸试验结果如下。 (1)喷丸件表层显微硬度明显提高,这是受到高的残余压应力、加工硬化和组织变化(细化)综合作用的结果,其中残留奥氏体的显著减少对硬度提高也做出了贡献。 (2)由于喷丸使工件表层中的残留奥氏体变为马氏体,可用来提高表面硬度。马氏体针明显较未喷丸件细小致密,起到了细化马氏体亚结构的作用。有利于残余应力的提高,从而提高了齿轮的疲劳性能。 3.提高齿轮的疲劳寿命例3:一汽采用强化喷丸工艺对“解放”牌汽车变速器一挡齿轮进行疲劳寿命试验,显著提高了齿轮的疲劳寿命。如表1所示。为了提高“解放”牌主动螺旋齿轮的疲劳寿命采用大圆弧滚刀切齿,增大齿轮圆角可以使主动螺旋齿轮的寿命由20.83万次提高到69.54万次,杏宇注册如果再采用强化喷丸,可以使其疲劳寿命提高到210.9万次。

更多...

加载中...

51La