杏宇官网微生物腐蚀是微生物通过自身的生命活动直接或者通过其代谢产物间接的影响金属材料腐蚀过程的现象。全世界每年因腐蚀造成的损失约占国民生产总值的3%~5%以上。硫酸盐还原菌 (SRB)、铁细菌、铁氧化细菌、硫氧化细菌等微生物为重要元凶,一半以上 (50%~80%) 的地下管线腐蚀由微生物引起[,许多国家将15%~20%的工程费用用于防腐。2016年,全国腐蚀调查显示,我国腐蚀成本占全部GDP的3.34%,总额超过21000亿元人民币。 微生物附着在工程材料表面形成生物膜,在材料和微生物膜界面处pH值、溶解氧、有机物和无机物等因素都与海洋本体环境完全不同。微生物活性可通过以下方式控制材料表面电化学腐蚀过程:(1) 微生物代谢过程影响材料的阴、阳极反应过程;(2) 微生物的代谢产物影响材料的阴阳极反应;(3)微生物通过在材料表面生成生物膜改变材料表面腐蚀环境;(4) 微生物直接参与金属的腐蚀过程。阴极保护技术作为最有效的腐蚀防护方法已经得到世界范围的承认,它被广泛地作为油气管道、船舶、海洋钻井平台等钢铁构筑物的腐蚀防护技术。阴极极化电位的施加改变了已有金属与微生物之间的平衡,引起金属-溶液界面性质变化,同时也影响着微生物的活动和金属的腐蚀行为。本文结合SRB的生理特征和金属材料阴极保护的可靠性,从阴极极化电位和 SRB 相互作用关系方面系统阐述和总结了施加阴极极化电位对SRB腐蚀的影响。 1 SRB的生态和生理特征SRB是指一类能够把硫酸盐、亚硫酸盐、硫代硫酸盐等硫化物以及 S 还原成 H2S 的细菌的统称。SRB广泛存在于土壤、海水、河水、地下管道、油气井等处。由于各地土壤类型、气候状况、地理位置等因素的差异,土壤中的SRB含量差别较大。我国库尔勒、格尔木、拉萨、杏宇登录注册成都、大庆、沈阳、大港、鹰潭8个土壤试验站的表层土壤的SRB含量小于或等于10~1800 cell·g-1不等。浙江省象山港海域表层海水和上覆水的 SRB 含量的年度均值分别为 173 和1000 cell·mL-1,沉积物中为 1440 cell·g-1;胶州湾潮间带和沿岸区、克莱德海表层沉积物中的SRB含量则分别高达4.1×107和2.7×107 cell·g-1。大部分陆生SRB是中温菌,其最适宜生长温度为30~40 ℃;海洋中SRB的最适宜生长温度稍低一些。SRB并不是严格的厌氧菌,分离自长庆油田采油回收污水水样的 SRB 可耐受 4.5 mg·L- 1浓度的溶解氧。适合SRB生长的pH值范围较广,在5.5~9.0的酸碱度范围内均能生长繁殖,其中7.5是比较合适的酸碱度条件。 2 含SRB环境中金属材料阴极保护的可靠性 3 阴极极化技术对SRB腐蚀的影响 3.1 阴极极化对金属材料氢脆和力学性能的影响 式中,Had和 Hab分别代表吸附在金属表面和扩散到金属内部中的H。阴极反应所产生的H部分以H2的形式逸出,部分则吸附在材料表面,逐渐渗透到金属的内部,从而引起氢脆,导致材料性能骤减而失效。常娥等对921A钢的氢脆敏感性研究表明,在-0.96 VSCE极化电位下,阴极反应产生的Had进入材料内部,材料强度增加,韧性降低,耐氢脆应力腐蚀性能降低。当负于-1.01 VSCE以后,析氢反应加剧,出现了脆性断裂。Yu 等研究认为,当金属表面有 SRB 出现时,SRB 生物膜可以从极化电极中获得电子传递给 H+催化产氢。此种情况下,吸附的H含量通常显着增加,SRB存在时氢渗透电流密度是无SRB存在时氢渗透电流密度的3~4倍。 3.2 阴极极化对金属构筑物周围环境的影响 当对被保护金属施加阴极电位时,在阴极极化的初始阶段,O2被还原,生成OH-: 在更负的阴极极化电位下,H2O 被还原生成OH-和H2。 以上反应表明,随着阴极极化电位的负移,金属材料周围环境中的pH值升高,环境逐渐变为碱性,并导致钙质层的沉积。 3.3 阴极保护对SRB的影响 阴极极化对SRB代谢影响可以分为以下几种: 3.3.1 阴极极化抑制 SRB 代谢 阴极保护条件下,在极化电极表面产生自由H的速率高于SRB去极化过程中的速率。有活性SRB存在时,外加保护电位会降低0.1 V,即降到-0.95 VCSE,才可以产生保护作用。甚至有研究结果表明,由于阴极极化导致金属腐蚀电位改变,从而在无菌环境中的阴极极化电位在SRB环境中变为阳极极化,即在SRB介质中金属的开路电位比无菌环境中最佳阴极保护电位更负。 3.3.2 阴极极化促进 SRB 代谢 SRB 代谢活性与阴极极化电位密切相关,随着阴极极化电位的负移,SRB的数目呈现先增加后减小的趋势,FeS的含量变化趋势与 SRB 细菌数目一致。强阴极极化电位下SRB数目的减少与其界面pH值的升高密切相关,而弱阴极极化下SRB数目增加说明弱阴极极化电位促进了SRB的代谢活性。赵晓栋等研究了含有 SRB 的海泥中阴极极化电位对碳钢腐蚀的影响,通过最大概率计数法结合不同阴极极化电位下的 Bode 图得出,在低电位(-0.85 VCSE) 下细菌的生长活性与稳定性高于在较高阴极极化电位 (-0.95 和-1.05 VCSE) 下的,且高于无施加阴极极化电位下的细菌数目。对硫还原地杆菌 (Geobactersulfurreducens) 的研究表明,生物膜形态和结构对金属表面的电流密度具有重要影响,离散的、稀疏的菌膜产生的电流密度高于致密的菌膜。因此不同阴极极化电位下,细菌生物膜形态和结构的改变及活性的变化都会对金属的腐蚀产生一定的影响。SRB 作为一种电活性微生物,其与极化金属间电子传递方式可分为直接电子传递 (DET) 和间接电子传递 (MET)。图3显示了SRB在与极化电极之间的DET和MET方式。 (1) 间接电子传递Fe 失去的电子须借助电子传递介质才能传递到SRB中。在微生物燃料电池中,电子传递介质的使用可以增加细菌的产电能力。电子传递介质从阴极极化的电极中获得电子,通过电子传递通道,将电子传递到SRB中。H可以作为SRB与极化电极之间间接电子传递的介质。施加阴极极化后,H+向电极表面移动并在电极表面上还原成[H];而[H]在SRB中氢化酶的催化下还原SO42-并为SRB的代谢提供能量,从而促进SRB的生长代谢。同时,在此过程溶液的pH值升高。研究表明,Desulfitobacterium 可以通过在极化-0.7 VSHE电极上进行H的活化。产电微生物Geobacter sulfurreducens可以利用极化电极上H的氧化还原进行产电,其反应如下: 核黄素、奎宁胡敏酸、吩嗪和黄素腺嘌呤二核苷酸 (FAD) 等是常见的内生电子传递介质。SRB 可以利用维生素B12等与极化的电极进行间接的电子传递。在SRB介质中,铁硫化物也可以作为SRB的电子传递通道。在这个过程中,硫酸铁 (Fe2(SO4)3)可以作为 SRB 的电子传递受体,从而将铁的腐蚀产物转化为碳酸铁 (Fe2(CO3)3)、蓝铁矿 (Fe3(PO4)2·(H2O)8)、硫化铁 (Fe2S3) 等,同时促进 SRB 的代谢活性,如图4所示。 (2) 直接电子传递直接电子传递为SRB利用细胞色素c等电子传递蛋白或者自身形成的纳米线与电极直接进行电子传递。Sherar 等和Xu等的研究表明,在碳源不足的条件下,SRB会形成纳米线从金属基体中直接获得电子。 除此之外,在共生的细菌中,非产电细菌亦可为产电细菌提供电子通道。Wegener等证明甲烷氧化细菌 (ANME-1) 与 SRB (HotSeep-1) 之间可以通过形成纳米线进行电子传递,图5中箭头明确指出了电子传递的纳米线。 4 问题与展望
杏宇官网隔膜泵是当今世界固-液两相介质输送的关键设备,主要应用于大型石化和煤化工等领域,也是冶金、建材等行业的重要配套设备,过去主要依靠进口。 1.1 现场情况 泵与进口泵对比见图1~2。 2.1 人员责任心不强 2.2 前处理不合格 2.3 不严格执行工艺 2.4 涂料选择不当 3 新旧涂料区别及新涂料性能指标 3.1 区别 3.2 新配套涂层性能指标 铁红环氧聚酰胺底漆、丙烯酸聚氨酯中间漆和丙烯酸聚氨酯漆的各种性能检测结果见表1。 4 结语
杏宇官网一价铜基吸附剂价格低,其活性位和吸附质之间能产生特殊的络合作用,是一种吸附性能强、具有工业应用前途的吸附剂。但是其存储条件比较苛刻,必须隔绝空气,否则易跟空气中的氧气发生作用变成二氧化铜。研究团队通过多次实验深入剖析一价铜氧化机理,尝试通过阻碍氧气进攻一价铜位点来防止氧化,但收效甚微。 “后来,我们发现一价铜基只有在氧气和水同时存在的条件下,才能在常温下发生氧化反应。”孙林兵介绍,他们掌握了一价铜氧化的秘密后,独辟蹊径通过调控一价铜改性Y分子筛的微环境,将吸附剂的表面性质从亲水调变为超疏水,阻碍水分子接触一价铜活性位,实现了在氧气存在的条件下一价铜基吸附剂的稳定。 “我们阻断了一价铜氧化必备的两个条件中的一个,也就是说给一价铜基穿上了一层‘防水衣’。”孙林兵形象地解释道,“普通吸附剂仅在2周内就完全丧失吸硫脱硫性能,杏宇平台注册但加了‘防水衣’的一价铜基吸附剂在空气中能稳定存储6个月,降低了存储成本,利于工业生产。” 此外,一价铜基吸附剂对含水燃料油显示出优异的吸附脱硫性能,经过循环再生后吸附容量不减。“普通的一价铜基吸附剂循环后吸附容量下降至原来的3%,穿了‘防水衣’的一价铜基吸附剂却可以循环使用。”该研究团队成员李玉霞介绍说,“我们的一价铜基吸附剂不仅能在空气中稳定存储6个月,而且经过循环再生后吸附剂仍能恢复到原有的吸附容量。” 使用一价铜基进行吸附分离,具有价格低、操作简便、高效稳定等特点。较之使用一价银等吸附剂进行工业分离,一价铜基价格低、吸附能力强;而较之催化加氢脱硫分离所需的高温高压严苛条件,一价铜基吸附分离可以在常温常压下进行。杏宇登录注册“还不会降低汽油中的辛烷值。”孙林兵解释说,“高辛烷值汽油更能充分燃烧,抗爆性能好,发动机就可以用更高的压缩比。” 一价铜基吸附剂在汽油、柴油等燃料中,可吸附芳香类硫化物,阻断含硫尾气的排放,从而达到绿色友好的功效。一价铜基吸附剂也能在烯烃/烷烃分离中选择性吸附烯烃,而不吸附烷烃,为烯烃类产品的生产提供高品质的原料。此外,一价铜基吸附剂也能在一氧化碳提纯分离中发挥作用。
全部加载完成